

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code WME02_01_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PMT

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

Question Number	Solution	Marks	Notes
1.	$\mathbf{I} = 2[\lambda \mathbf{i} + \lambda \mathbf{j} - 5\mathbf{i} - 3\mathbf{j}]$	M1	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$
	$= 2(\lambda-5)\mathbf{i}+2(\lambda-3)\mathbf{j}$	A1	Any equivalent form
	$ I = \sqrt{40} \Rightarrow (\lambda - 5)^2 + (\lambda - 3)^2 = 10$	M1	Correct use of Pythagoras and their impulse to form an equation in λ
	$\lambda^2 - 8\lambda + 12 = 0 \Longrightarrow \lambda = 2 \text{ or } \lambda = 6$	DM1	Solve to find both values for λ . Dependent on the 2 preceding M marks
	$\mathbf{I} = -6\mathbf{i} - 2\mathbf{j} \text{ or } \mathbf{I} = 2\mathbf{i} + 6\mathbf{j}$	A1	And no others
	(a = -6, b = -2 or a = 2, b = 6)		
		(5)	
	Alternative working:		
	$\mathbf{I}(=a\mathbf{i}+b\mathbf{j})=2(\mathbf{v}-(5\mathbf{i}+3\mathbf{j}))$	M1A1	
	$\mathbf{v} = \frac{a+10}{2}\mathbf{i} + \frac{b+6}{2}\mathbf{j} \implies (\Rightarrow a+10 = b+6)$		
	$a^2 + b^2 = 40 \implies b^2 - 4b - 12 = 0$		Correct use of Pythagoras
	or $a^2 + 4a - 12 = 0$	M1	and impulse to form an equation in a or b
	$b^2 - 4b - 12 = 0 \implies b = 6 \text{ or } b = -2$	DM1	ring equivalent form
	$v = 4v = 12 - 0 \implies v = 0.01 \ v = -2$		
	$\mathbf{I} = -6\mathbf{i} - 2\mathbf{j} \text{ or } \mathbf{I} = 2\mathbf{i} + 6\mathbf{j}$	A1	Or simplified equivalent
		[5]	

Question Number	Solution	Marks	Notes
2	Driving force $=\frac{3P}{12}$	B1	Use of $P = Fv$ Allow for $\frac{P}{12}$ in second equation if not awarded here
	Motion up the hill	M1	Need all terms. Condense sign arrors and
	$F - R - W \sin \theta = 0$	101 1	sin/cos confusion
	$\frac{3P}{12} - R - \frac{9000}{15} = 0$ (3P) R (00)	A1	Correct substituted equation Any equivalent form
	$\left(\frac{12}{12} - K = 600\right)$		
	Motion down the hill $F + W \sin \theta - R = \frac{9000}{9.8} \times \frac{9.8}{20}$	M1	Need all terms. Condone sign errors and sin/cos confusion.
	$\frac{P}{12} + \frac{9000}{15} - R = 450$	A1	Substituted equation with at most one error. Any equivalent form.
	$\left(\frac{P}{12} - R = -150\right)$	A1	Correct substituted equation. Any equivalent form.
	Solve for <i>P</i> or <i>R</i>	DM1	Dependent on both preceding M marks
	$\left(\frac{2P}{12} = 750\right) \Longrightarrow P = 4500$	A1	One correct
	R = 525 (530)	A1	Both correct
		(9)	
SC1	Misread mass = 9000kg Gives equations $\frac{P}{4} = R + 5880$ $\frac{P}{12} = R - 1470$ Solutions: $P = 44100, R = 5145$		B1 M1A0 M1A1ftA0 M1A1ftA1ft Total 7/9
SC2	Use of mass = weight = 9000		B1
	Gives equations $\frac{P}{4} = R + 600$ $\frac{P}{12} = R + 3810$		M1A1 M1A1A0 M1A0A0 Total 6/9
	Solutions: $P = -19260, R = -5415$		
		[9]	

Question	Solution	Marks	Notes
3			
	$\wedge \frac{3}{5}$		
	R $25g$		
	$A \longrightarrow \frac{4}{5}R$		
	Use of $F = \mu R$	B1	At least once
	Resolve horizontally	M1	Allow with their horizontal friction
	$S = \frac{4}{5}R \left(S = F_A\right)$	A1	Correct unsimplified equation
	Resolve vertically	M1	Allow with their vertical friction
	$\frac{3}{-S} + R = 25g$ $F_{\rm p} + R = 25g$		
	5	A1	Correct unsimplified equation
	$\left(\frac{3}{-S} + \frac{5}{-S} = 25g, S = \frac{500}{-g}g\right)$	111	Concer unsimplified equation
	$(5 \ 4 \ 37 \ 37 \)$		
	Moments equation	M1	Any moments equation. Need all
	3		terms & dimensionarry correct
	$M(A): 25g \times 1.5\cos\theta = S \times 3\sin\theta + \frac{5}{5}S \times 3\cos\theta$		
	$\left(\frac{25g\cos\thetaS\cos\theta}{5} = 2S\sin\theta\right)$	A1	Correct unsimplified equation
	4		
	$M(B): R \times 3\cos\theta = 25g \times 1.5\cos\theta + \frac{-R}{5} \times 3\sin\theta$		
	M1A1 for first equation, M1A1 for second equation,	M1A1 f	or third equation (i.e. mark in the
	order in which they appear rather than as listed on th	e mark so	cheme).
	Can also be solved using one resolution and two more	r the desi	ations
	Friction acting in the wrong direction scores A0.	inentis eq	
	$\begin{pmatrix} 25 & 6 \\ \hline & 25 & 600 \end{pmatrix}$		Substitute to form equation in
	$\tan \theta = \left \frac{23g - 5}{5} \right = \left \frac{23 - 3}{37} \right $		$\tan \theta$ only
	2S 1000	DMI	Dependent on M marks for the
	() 37		equations
	$-\frac{325}{-13}$	Δ 1	Or exact equivalent (0.225)
	$-\frac{1}{1000}(-\frac{1}{40})$	AI	Of exact equivalent (0.525)
		(9)	
SC	It is possible to solve by resolving horizontally or		M1A1 for a correct resolution
	vertically and taking moments about the centre:		equations to solve
	$1.5\cos\theta \times R = 1.5\cos\theta \times \frac{5}{5}S$		
	5 Л		
	$+1.5\sin\theta \times S + 1.5\sin\theta \times \frac{1}{5}R$		
	5	[9]	

Question Number	Solution						Marks	Notes
4a		ABCD	PORV	RSTU	L			
	Mass ratio	64	4	16	44		B1	Correct mass ratios for their split
	c of m from AD	4 <i>a</i>	2a	5a	(<i>d</i>)		B1	Correct distances from vertical axis for their split
								Must be multiples of a
	M(AD)						M1	Moments about <i>AD</i> or a parallel axis. Need all terms and dimensionally consistent.
	64×4 <i>a</i> -	$4 \times 2a -$	$16 \times 5a =$	= 44 <i>d</i>			A1	Correct unsimplified equation Accept as part of a vector equation
	$\Rightarrow d = \frac{16}{4}$	$\frac{58}{4}a = \frac{42}{11}$	$\frac{2}{1}a *$				A1*	Obtain given answer from correct working
							(5)	
4b	C of M of	L lies at	midpt of	AC			B1	Seen or implied
	M(Mid pt	AB)					M1	Use of moments to form equation in <i>k</i> .
	$\begin{pmatrix} 42 \end{pmatrix}$	aM = A	abM				A1	Correct unsimplified equation.
	$\left(\frac{4}{11} \right)$	uw = +c	IKIVI					Allow with <i>a</i> not seen
	$k = \frac{1}{22}$						A1	0.05 or better (0.0454545) Allow with <i>a</i> not seen
							(4)	
4b alt	C of M of	<i>L</i> lies at	midpt of	AC			B1	Seen or implied by use of $\overline{x} = \overline{y}$ or tan $45^\circ = 1$
	Find \overline{x} and	d \overline{y} for	system				M1	
	From <i>AB</i> : From <i>BC</i> :	$\frac{42}{11}Ma = \frac{46}{11}aM = \frac{46}{11}aM = \frac{46}{11}aM = \frac{1}{10}aM =$	+8akM = (1+k)	$= (1+k)$ $M\overline{x}$)My		A1	Correct unsimplified equations in \overline{x} and \overline{y} Allow with <i>a</i> not seen
	$\overline{x} = \overline{y} \Longrightarrow$	$\frac{42}{11} + 8k$	$=\frac{46}{11}\Rightarrow$	$k = \frac{1}{22}$			A1	Allow with <i>a</i> not seen
4b alt	C of M of	<i>L</i> lies at	midpt of	AC			B1	Seen or implied in moments equation
	If G is c o	f m of L	then tan	ABG =	$\frac{42}{46}$ and	take	M1	Complete method for moments about <i>B</i>
	moments	about B					A 1	Competenzing lifed a sustion in h
	8 <i>a</i> sin 45	• × KM					AI	Correct unsimplified equation in κ
	$=\frac{Ma}{Ma}$	$\frac{\sqrt{46^2 + 4}}{11}$	$\frac{42^2}{\sin(4\pi)}$	45° <i>–</i> AI	BG)			Allow with <i>a</i> not seen
			$\Rightarrow k =$	$=\frac{1}{22}$			A1	Allow with <i>a</i> not seen
							D (~
4b alt	C of M of	L lies at	midpt of	AC			B1	Seen or implied in moments equation

	Take moments about the centre of ABCD	M1	
	$M \times \frac{2\sqrt{2}}{11}a = kM \times 4\sqrt{2}a$	A1	Correct unsimplified equation in <i>k</i> Allow with <i>a</i> not seen
	$\Rightarrow k = \frac{1}{22}$	A1	Allow with <i>a</i> not seen
		[9]	
Question Number	Solution	Marks	Notes
5a	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate to obtain a – powers going down
	$= (6t-9)\mathbf{i} + (2t+1)\mathbf{j}$	A1	differentiation correct
	$=9i+7j (m s^{-2})$	A1	ISW if go on to find a
		(3)	
5b	Instantaneous rest \Rightarrow v = 0 i + 0 j	M1	Set $\mathbf{v} = 0$ and solve for t
	$\Rightarrow 3(t-1)(t-2) = 0$		(Need both components equal to zero)
	and $(t-2)(t+3) = 0$		
	$\Rightarrow t = 2$	A1	
	$\mathbf{r} = \int \mathbf{v} dt$	M1	Integrate to obtain \mathbf{r} – powers going up. Condone if no constant of integration seen.
	(3 9 2 c) (1 3 1 2 c)	A1	At most one error
	$=\left[t^{3}-t^{2}+6t\right]\mathbf{i}+\left[-t^{3}+t^{2}-6t\right]\mathbf{j}$	A1	Correct integration
			Allow column vector.
			and non-zero constants(s) of integration
	22 $\sqrt{\left(22\right)^2}$	DM1	Correct strategy to find the
	$=2\mathbf{i}-{3}\mathbf{j}$, distance $=\sqrt{2^2+\left({3}\right)}$		distance, i.e. substitute their value
			Dependent on the two preceding M
			marks
	$=\frac{2\sqrt{130}}{3}=7.60$ (m)	A1	7.6 or better from correct work
		(7)	
		[10]	

Question Number	Solution	Marks	Notes
6a	$R = 6g \cos \alpha$	B1	Correct normal reaction
	Work done = $15 \times 0.25 \times R$	M1	Correct method with their <i>R</i>
	= 204 (J)	A1	Or 200(J) Accept 21g or better. (20.7692g) Not $\frac{2646}{13}$
		(3)	
6b	NB The question specifies that the work-energy pri <i>suvat</i> equations are not accepted.	nciple sho	buld be used, so solutions based on
	Initial KE – GPE lost – WD = final KE	M1	Use of work-energy to form equation in <i>v</i> . Dimensionally correct. Ignore sign errors. Allow WD or their WD
	$\frac{1}{2} \times 6 \times 14^{2} - 6g \times 15 \times \frac{5}{13} - 6g \times 15 \times \frac{3}{13}$ $= \frac{1}{2} \times 6v^{2}$ $(2 - 10c - \frac{450g}{270g} - 270g - 2z^{2})$	A1ft A1ft	Unsimplified equation with at most one error Correct unsimplified equation Follow their WD
	$\left(\frac{3 \times 196 - \frac{13}{13} - \frac{13}{13} = 3V}{13}\right)$		
	v = 3.88 (3.9)	A1	Max 3 sf
	Work-energy equation	M1	Complete method using work- energy to form equation in <i>w</i> . Dimensionally correct. Ignore sign errors.
	$\frac{1}{2} \times 6 \times \overline{14^2 - 6g \times 15 \times \frac{3}{13}} = \frac{1}{2} \times 6w^2$ or $\frac{1}{2}mw^2 = \frac{1}{2}mv^2 + mg \times \frac{15 \times 5}{13}$	Alft	Correct unsimplified equation Follow their WD or their v
	w = 11.3 (11)	A1	Max 3 sf
		(7)	
		[10]	

Question	Solution	Marks	Notes
7			
	$\longrightarrow 2u \longrightarrow u$		
	(A) (B)		
	$\begin{pmatrix} 3m \end{pmatrix} \begin{pmatrix} m \end{pmatrix}$		
	$\rightarrow v \rightarrow w$		
	v <		
	A		
7a	KE gain = final KE – initial KE	M1	KE equation for <i>B</i> .
	48 . 1 . 1 .	A1	Correct unsimplified equation to
	$\frac{10}{25}mu^2 = \frac{1}{2}mw^2 - \frac{1}{2}mu^2$		find w
	$\left(w^2 - \frac{121}{u^2} + w - \frac{11}{u}\right)$		
	$\binom{w}{25} \frac{25}{5} \frac{w}{5} \frac{1}{5} \frac{1}{5}$		
	$CLM: 3m \times 2u + mu = 3mv + mw$	M1	All terms required. Condone sign errors
	$\left(7mu = 3mv + \frac{11}{5}mu\right)\left(v = \frac{8}{5}u\right)$	A1	Correct unsimplified equation in v and w or their w
	Impact law:	M1	Used correctly
	w - v = e(2u - u)	A1	Correct unsimplified equation in v and w or their v and w
	Solve for <i>e</i>	DM1	Dependent on the preceding M
	2 2	Δ1	marks
	$\frac{3}{5}u = eu, e = \frac{3}{5}$	711	
		(8)	
7b	Impact law: $fw = v$	M1	Condone sign error
	$f = \frac{8}{3}$	A1	0.73 or better
	$J = \frac{1}{11}$		Final answer must be positive
		(2)	

Question Number	Solution	Marks	Notes
8a	Horizontal component: $p = 8$	B1	
	Vertical component: $-12 = q - 3g$	M1	Complete method to find q using super Condone sign errors
	q = 17.4	A1	17 or better
	Speed = $\sqrt{8^2 + 17.4^2}$	M1	Use of Pythagoras to find speed using their velocity. Independent M mark
	=19.2 (19)(ms ⁻¹)	A1	3 sf or 2 sf
		(5)	
8h	Use of Puthagoras to find vertical component	M1	
80	vertical component $= \pm 6$	A1	Seen or implied Accept without +/-
	-6 = 6 - 9.8T	DM1	Complete method using <i>suvat</i> to find required time Dependent on the previous M1
	T = 1.22 (1.2)	A1	3 sf or 2 sf. Not $\frac{60}{49}$
		(4)	
8b alt	Use <i>suvat</i> and Pythagoras to form an equation in <i>t</i>	M1	Or an inequality
	$8^2 + (17.4 - gt)^2 = 100$	A1	Correct unsimplified equation for t Accept inequality
	Solve for <i>T</i>	DM1	Complete method to obtain T Dependent on the previous M1
	T = 1.22 (1.2)	A1	3 sf or 2 sf. Not $\frac{60}{49}$
		(4)	
8c	Velocity perpendicular \Rightarrow vertical component $=\frac{2}{3} \times 8$	M1	Complete method to find vertical component of velocity at <i>B</i>
	$=\frac{16}{3}$	A1	
	$(-12)^2 = \left(\frac{16}{3}\right)^2 - 2g(-h)$	DM1	Complete method to find the required vertical distance using their vertical component of the velocity Dependent on the previous M1
	h = 5.90 (5.9) (m)	A1	Max 3 sf
		(4)	
8c alt	$\binom{8}{17.4 - gt} \cdot \binom{8}{-12} = 0 \text{ and time } = 3 - t$	M1	Complete method to find the time from B to A
	Time $= 3 - 1.23 = 1.768$	A1	
	$s = vt - \frac{1}{2}gt^2 = 12t - 4.9t^2$	DM1	Complete method to find the required vertical distance using their time Dependent on the previous M1
	s = 5.9 (m)	A1	Max 3 sf

P	٨Л	т
ר ו	VI	1

[12]	
	[13]

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom